How many ovules are in a flower
No more, no less Exactly two fertile sperm should reach the two cells in each ovule. Armed with these new capabilities, the team, including second author Alexander Leydon, conducted a series of experiments in Arabidopsis plants, a model plant for research.
The most important tool was a pollen mutant the team had discovered called hap2. The mutant grows a pollen tube to an ovule and bursts to release sperm, a normal course of events. It is a convenient dud. The team also employed new techniques that allow pollen tubes and the sperm they carry to fluoresce as green or red. That way they could watch as different tubes interacted with the ovules.
In their first experiment, the team sent in healthy sperm, half of which were carried by red-tagged tubes and half of which by green-tagged tubes. Whole plants that include only male parts or only female parts, like animals, are called dioecious plants. While animal reproduction requires insemination of a female by a male, the corresponding transfer of genetic material in flowering plants in called pollination. Within the petals of a flower are long, narrow structures, much like plants in themselves, called pistils and stamens.
The pistil is the "male" component of the flower, and the stamen is the "female" component. The stamen is usually shorter and folded open at the top. The stamen consists of a stalk, called a filament, that is topped an anther, where the pollen is made. The pistil receives the pollen from the stamen, which grows down the style analogous to the filament in the stamen to the ovary. The ovary contains a number of ovules, each of which contains an egg. Other parts of a flower include sepals and a receptacle.
Evolutionary morphology: distinguishing ancestral structure from derived structure in flowering plants. Taxon 20 : 63 — Fagerlind F. Fallen EM. The gynoecial development and systematic position of Allamanda Apocynaceae. American Journal of Botany 72 : — Floral structure in the Apocynaceae: morphological, functional and evolutionary aspects. Farrar J , Ronse De Craene To be or not to be a staminode: the floral development of Sauvagesia Ochnaceae reveals different origins of presumed staminodes.
In Bernisen T , Alavik K , eds. Flowers, morphology, evolutionary diversification and implications for the environment. New York : Nova Science , 89 — Carpel development.
Advances in Botanical Research 55 : 1 — Evolution and Development 18 : — Early flowers and angiosperm evolution. Origin and evolution of angiosperm flowers. Advances in Botanical Research 17 : 99 — After a dozen years of progress the origins of angiosperms is still a great mystery. Nature : — The mostly male theory of flower evolutionary origins. Nature Reviews Genetics 4 : — Gaussen H.
Les gymnospermes actuelles et fossiles. Gifford EM Jr. The shoot apex in angiosperms. Botanical Review 20 : — Frontiers in Plant Science 8 : Le carpelle. La Cellule 47 : — Greyson RL. The development of flowers. Oxford : Oxford University Press.
Frontiers in Plant Science 9 : Stamen, carpel and ovule. The teratological approach to their interpretation. Advancing Frontiers in Plant Sciences 14 : 43 — Morphology of seed-plants. Vaduz : J. Vascular anatomy of kiwi fruit and its implications for the origin of carpels. Frontiers in Plant Science 4 : Dianthus chinensis L. Haccius B. Planta 40 : — Hagemann W. Der Mathematische und Naturwissenschaftliche Unterricht 20 : — The organization of shoot development.
Revista de Biologia 9 : 43 — Hagerup O. Zur Abstammung einiger Angiospermen durch Gnetales und Coniferae. On the origin of some angiosperms through the Gnetales and the Coniferae IV. The gynaecium of Personatae. Det Danske Videnskabernes Selskab.
Biologiske Meddelelser, XV 2 : 1 — Hallier H. Jahrbuch der Hamburgischen Wissenschaftlichen Anstalten, Beiheft 3 19 : 1 — Hartl D. Henslow G. The origin of floral structures through insect and other agencies. Palaeobotanical redux: revisiting the age of the angiosperms. Nature Plants 3 : Herrera-Ubaldo H , de Folter S. Exploring cell wall composition and modification during the development of the gynoecium medial domain in Arabidopsis. Hilton J , Bateman RM.
Pteridosperms are the backbone of seed plant evolution. Journal of the Torrey Botanical Society : — Hofmeister W. Leipzig : Engelmann. Igersheim A , Endress PK. Gynoecium diversity and systematics of the Magnoliales and winteroids. Gynoecium diversity and systematics of the paleoherbs. Ranunculacean flower terata: records, a classification, and some clues about floral developmental genetics and evolution.
Flora : 64 — Joshi AC. Floral histogenesis and carpel morphology. Journal of the Indian Botanical Society 26 : 63 — Kaplan DR. Floral morphology, organogenesis and interpretation of the inferior ovary in Downingia bacigalupii.
American Journal of Botany 54 : — Histogenesis of the androecium and gynoecium in Downingia bacigalupii. American Journal of Botany 55 : — On the value of comparative development in phylogenetic studies — a rejoinder. Phytomorphology 21 : — Karsten G. Kaul RB. Ontogeny and anatomy of the flower of Limnocharis flava Butomaceae. Ancestral and monophyletic presence of diplostigmaty in Sebaea Gentianaceae and its potential role as a morphological mixed mating strategy.
Klopfer K. Flora B : 1 — Isolation and characterization of novel mutants of Arabidopsis thaliana defective in flower development.
Lam HJ. Classification and the New Morphology. Acta Biotheoretica 8 : — Stachyospory and phyllospory as factors in the natural system of the Cormophyta. Svensk Botanisk Tidskrift 44 : — Transactions of the Botanical Society of Edinburgh 38 : — Leinfellner W. Zur Lage des wahren Karpellrandes. Leins P. Berichte der Deutschen Botanischen Gesellschaft 85 : — Leins P, Erbar C. Leins P , Erbar C. Flower and fruit. Stuttgart : Schweizerbart Science Publishers.
Development of incompletely fused carpels in maize ovary revealed by miRNA, target gene and phytohormone analysis. Lister G. On the origin of the placenta in the tribe Alsineae of the order Caryophyllales. Journal of the Linnean Society, Botany 20 : — Plant Cell 12 : — From leaf and branch into a flower: Magnolia tells the story. Botanical Studies 55 : Comparative floral structure and systematics in the sarracenioid clade Actinidiaceae, Roridulaceae and Sarraceniaceae of the Ericales.
Epidermal cell interactions: a case for local talk. Trends in Plant Science 4 : 14 — Long AG. Some Lower Carboniferous fructifications from Berwickshire, together with a theoretical account of the evolution of ovules, cupules, and carpels. Transactions of the Royal Society of Edinburgh 66 : — Lorch J. The carpel — a case-history of an idea and a term.
Centaurea 8 : — Hormonal control of the development of the gynoecium. Current Opinion in Plant Biology 29 : — The role of cytokinin during Arabidopsis gynoecium and fruit morphogenesis and patterning.
Plant Journal 72 : — Hormones talking: does hormonal crosstalk shape the Arabidopsis gynoecium? Plant Signaling and Behaviour 7 : 12 , 1 — 4. Masters MT. Vegetable teratology, an account of the principal deviations from the usual construction of plants. London : Robert Hardwicke. Mathews S , Donoghue MJ. The root of angiosperm phylogeny inferred from duplicate phytochrome genes. Science : — Comparative floral structure and systematics in Ochnaceae s.
Ochnaceae, Quiinaceae, Medusagynaceae; Malpighiales. Comparative floral structure and systematics in Crossosomatales Crossosomataceae, Stachyuraceae, Staphyleaceae, Aphloiaceae, Geissolomataceae, Ixerbaceae, Strasburgeriaceae. Comparative floret development in Stipa tortilis and Oryzopsis miliacea Gramineae.
Botanical Gazette : — Meeuse ADJ. From ovule to ovary: a contribution to the phylogeny of the megasporangium. Acta Biotheoretica 16 : — Anatomy of morphology. Leiden : Brill.
Melville R. Glossopteridae, Angiospermidae and the evidence for angiosperm origin. Botanical Journal of the Linnean Society 86 : — Meyen SV. Origin of the angiosperm gynoecium by gamoheterotopy. Botanical Journal of the Linnean Society 97 : — Moeliono BM. A preliminary note on the placenta of Stellaria media L. A possible axial origin of ovula? Acta Botanica Neerlandica 8 : — De caulomatische oorsprong van Caryophyllaceen and Primulaceen.
Doctoral dissertation, University of Amsterdam. Cauline or carpellary placentation among dicotyledons axis-borne versus leaf-borne ovules. Assen : Van Gorcum. Towards a comprehensive and dynamic gynoecium gene regulatory network. Current Plant Biology 3—4 : 3 — Mulcahy DL. The rise of the angiosperms: a genecological factor. Science : 20 — Newman IV. Ontogeny of the angiospermic carpel. Nature : 70 — Studies in the Australian acacias. The meristematic activity of the floral apex of Acacia longifolia and Acacia suaveolens as a histogenetic study of the ontogeny of the carpel.
Floral structure and development in Rafflesiaceae with emphasis on their exceptional gynoecia. Nishino E. Corolla tube formation in six species of Apocynaceae. Botanical Magazine Tokyo 95 : 1 — Floral vascular anatomy as a source of information on evolution of angiosperms: history of study and current views. Botanicheskiy Zhurnal St. Petersburg 99 : — Okamoto M. Centrifugal ovule inception I.
Sequence of ovule inception in Silene cucubalus. Botanical Magazine Tokyo 97 : — Ozenda P. Paris : Jouve. Pankow H. Histogenetische Untersuchungen an der Plazenta der Primulaceen. Berichte der Deutschen Botanischen Gesellschaft 72 : — Botanische Studien Jena : Fischer. Parkin J. Comments on the theory of the solid carpel and carpel polymorphism.
New Phytologist 25 : — The classical carpel and recent attacks. Pax F. Payer J-B. Paris : Masson. Penzig O. Pflanzen-Teratologie, systematisch geordnet , 2nd edn. Berlin : Borntraeger. Perales M , Reddy GV. Stem cell maintenance in shoot apical meristems. Current Opinion in Plant Biology 15 : 10 — An evolutionary framework for carpel developmental control genes. Molecular Biology and Evolution 34 : — Seed plant-specific gene lineages involved in carpel development.
Development and evolution of the gynoecium in Myrteae Myrtaceae. Australian Journal of Botany 62 : — Gynoecial ontogeny of Anthurium : contributions for floral developmental studies in Araceae Alismatales.
Botany 93 : 47 — Posluszny U , Sattler R. Floral development of Najas flexilis. Canadian Journal of Botany 54 : — Posluszny U , Tomlinson PB. Aspects of inflorescence and floral development in the putative basal angiosperm Amborella trichopoda Amborellaceae. Canadian Journal of Botany 81 : 28 — Puri V. Studies in floral anatomy III. On the origin and orientation of placental strands. The earliest angiosperms: evidence from mitochondrial, plastid and nuclear genomes.
Ram M. Morphological and embryological studies in the family Santalaceae — II. Exocarpus , with a discussion on its systematic position. Phytomorphology 9 : 4 — Rauh W. Morphologische, entwicklungsgeschichtliche, histogenetische und anatomische Untersuchungen an den Sprossen der Didiereaceen. Akademie der Wissenschaften und der Literatur Mainz : — Rauh W , Reznik H. Sitzungsberichte der Heidelberger Akademie der Wissenschaften, Mathematisch-naturwissenschaftliche Klasse, Abhandlungen 3 : — Significance of epidermal fusion and intercalary growth for angiosperm evolution.
Trends in Plant Science 6 : — Retallack G , Dilcher DL. Arguments for a glossopterid ancestry of angiosperms. Paleobiology 7 : 54 — Inside the gynoecium: at the carpel margin. Trends in Plant Science 18 : — PLoS Genetics 13 : e Mechnical control of morphogenesis at the shoot apex.
Journal of Experimental Botany 64 : — Roeper J. Observationes aliquot in florum inflorescentiarumque naturam. Linnaea 1 : — Rohweder O. Centrospermen-Studien 1. Fries Caryophyllaceae.
Centrospermen-Studien 2. Centrospermen-Studien 3. Karpellbau und Synkarpie bei Ranunculaceen. Berichte der Schweizerischen Botanischen Gesellschaft 77 : — Karpellrand und Stellung der Samenanlagen bei den Ranales. Berichte der Deutschen Botanischen Gesellschaft 80 : — Centrospermen-Studien 4. Rohweder O , Huber K. Centrospermen-Studien 7. Beobachtungen und Anmerkungen zur Morphologie und Entwicklungsgeschichte einiger Nyctaginaceen.
The floral development of Pleuropetalum darwinii , an anomalous member of the Amaranthaeae. The anther produces pollen male reproductive cells. The filament holds the anther up. During the process of fertilization , pollen lands on the stigma, a tube grows down the style and enters the ovary. Male reproductive cells travel down the tube and join with the ovule, fertilizing it.
0コメント